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Abstract. Topographic change at a given location usually results from multiple processes operating over different 10 

timescales. However, interpretations of surface change are often based upon single values of movement, measured over a 

specified time period and in a single direction. This work presents a method to help separate surface change mechanisms 

related to the deformation of an active rock glacier, drawing on terrestrial lidar monitoring at sub-monthly intervals. We 

derive 3D topographic changes across the Äußeres Hochebenkar rock glacier in the Ötztal Alps. These are presented as the 

relative contribution of surface change during a three-week period of snow-free conditions (2018) to the annual surface 15 

change (2017-2018). They are also separated according to the direction perpendicular to the local rock glacier surface (using 

point cloud distance computation) and the direction of rock glacier flow, indicated by movement of individual boulders. In a 

1500 m² sample area in the lower tongue section of the rock glacier, the contribution of the three-week period to the annual 

change perpendicular to the surface is 20 %, as compared to 6 % in the direction of rock glacier flow. This shows that 

different directions of surface change are dominant at different times of the year. Our results demonstrate the benefit of more 20 

frequent lidar monitoring and, critically, the requirement of novel approaches to detecting change, as a step towards 

interpreting the mechanisms that underlie the surface change of rock glaciers. 

1 Introduction 

Rock glaciers play a key role in understanding the impact of changing environmental conditions on the high-mountain 

cryosphere. Their deformation, i.e. change in shape and/or size, has shown sensitivity to atmospheric conditions at 25 

interannual (Roer et al., 2008; Sorg et al., 2015; Kellerer-Pirkelbauer et al., 2018) and seasonal (Delaloye et al., 2010; 

Kenner et al., 2017) timescales. Rising permafrost temperatures, which have been observed since the 1980s, have led to an 

acceleration of rock glacier movement (Kääb et al., 2007; Sorg et al., 2015). Deformation can result from different 

mechanisms across the rock glacier, such as plastic deformation proximal to the accumulation zone, shearing within distinct 
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layers, mass accumulation and thickening, frost heave, and thaw settlement (Barsch, 1996; Kääb et al., 1997; Krainer et al., 30 

2015; Kenner et al., 2017). While certain processes tend to operate within distinct zones (Kenner et al., 2017), multiple 

mechanisms may occur in unison at a given point on the surface, with the resulting surface change representing 

superimposed expressions of these mechanisms. 

Disaggregating the changes related to this deformation represents a valuable step in interpreting how rock glaciers move, as 

well as what drives this movement. Approaches to support these interpretations based on in situ monitoring, such as the 35 

distribution of electrical resistivity tomography values (Zahs et al., 2019) or ground temperature records from boreholes 

(Kenner et al., 2017) are also of value. To distinguish changes at the surface, which are assumed to be in the order of a few 

centimeters within timescales of few weeks, 3D topographic data at high spatial resolution are required. These can be 

obtained using lidar systems (e.g. Bollmann et al., 2012; Micheletti et al., 2016; Zahs et al., 2019), which provide high‐

accuracy and high‐precision 3D measurements of a surface at centimeter-scale point spacing (generally equating to spatial 40 

resolution). 

Several studies have relied on two-dimensional raster-based methods, such as the differencing of digital elevation models, to 

detect rock glacier surface change (Bollmann et al., 2012; Bollmann et al., 2015). These are limited, however, in 

representing changes to steep and complex morphology (Hodge et al., 2009; Sailer et al., 2014) and provide change in a 

single direction, typically vertically. The Multiscale Model to Model Cloud Comparison (M3C2) algorithm (Lague et al., 45 

2013) overcomes these limitations by computing point-wise cloud distances in a direction perpendicular to the local surface. 

While Zahs et al. (2019) have applied this approach to existing datasets of the rock glacier Äußeres Hochebenkar, the 

processes that cause the observed changes may induce movement along different predominant directions. Examining change 

in multiple directions may therefore be required in order to distinguish these processes. 

Repeated data acquisitions using lidar have seen increasing use in order to detect and quantify rock glacier surface change 50 

(Bollmann et al., 2012; Bollmann et al., 2015; Micheletti et al., 2016; Klug et al., 2017; Zahs et al., 2019). To date, most 

studies have used monitoring intervals of one year or longer. This is problematic where the aim is to increase the 

understanding of processes operating over shorter timescales, such as the movement of individual boulders, or the drivers of 

these processes, such as individual precipitation events. Ideally, monitoring intervals should be short enough to approach the 

timescale over which changes occur, or the timescale of variability in external drivers; yet this remains difficult to define in-55 

situ (e.g. Williams et al., 2019). The point cloud-based assessment of geomorphological activity at the Äußeres Hochebenkar 

conducted by Zahs et al. (2019) demonstrated that deformation processes occurred continuously at the rock glacier’s lower 

tongue over a 12-year period. However, it was shown that there are episodic processes as well, which may be masked by 

continuous deformation processes at the timescale of a year. 

In this study, we examine the benefits of interpreting 3D surface change from short interval monitoring in terms of its 60 

contribution to annual movement and the drivers behind it. By quantifying surface change based on movements that occur in 

different directions, we aim to distinguish creep-related processes from other processes of surface change (e.g. surface 

lowering or surface heave). To achieve this, movements normal to the surface of an active rock glacier, derived from the 
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M3C2 algorithm, and movements in the direction of rock glacier flow, derived from individual boulder tracking, will be used 

(Fig. 1). The contribution of a three-week period to the annual surface change will be assessed by considering this 65 

contribution as a ratio between the surface change occurring during the three-week period and the surface change within one 

year. This will enable to disclose the contribution of short-term surface changes to annual surface changes in the context of 

superimposed, and hence cumulated, surface changes for the first time. 

 

Fig. 1. Changes to the rock glacier surface in the direction normal to the local surface were calculated using the M3C2 algorithm 70 

over a three-week and a one-year period. The results of the M3C2 algorithm were combined with distances between the centroids 

(ℝ3) of corresponding boulders within each point cloud, representing movement in the direction of rock glacier flow. The changes 

in both directions are expressed as the percentage contribution of the three-week period to the annual surface change rates. 

2 Study Site and Data 

Our study site is the lower tongue area of the Äußeres Hochebenkar rock glacier (Fig. 2), located near Obergurgl in the 75 

southern Ötztal Alps, Austria (46°50′ N, 11°01′ E). Long-term measurements have shown that the surface velocity of the 

rock glacier has increased since the mid-1980s (Schneider, 1999; Kaufmann & Ladstädter 2002; Bollmann et al., 2012; Klug 

et al., 2012; Hartl et al., 2016b).  
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Fig. 2. Overview of the study area (a). The inset (b) shows the lower tongue area of the Äußeres Hochebenkar rock glacier. Active 80 

zone 1 comprises the rock glacier front, while active zone 2 represents a ridge above the rock glacier front exhibiting negative 

surface change in the direction normal to the surface in both periods. Images: J. G. Williams, 21 July 2019. 

 

In this paper we report on three Terrestrial Laser Scanning (TLS) datasets, captured on 19 July 2017, 7 July 2018, and 

30 July 2018 from seven scan positions (six positions in the dataset of 30 July 2018), located around the lower tongue. The 85 

three-week period during July 2018 was selected because it presented snow-free conditions. Riegl VZ-400 (acquisition in 

2017) and Riegl VZ-2000i (acquisitions in 2018) TLS instruments were used, capable of range measurement accuracies of 

± 5 mm and a precision of ± 3 mm at 100 m scanning range (lower tongue width ~150 m). Accuracy and precision may vary 

across surfaces with varying target range and geometry. To obtain high point densities for an accurate representation of 

single boulders, a vertical and horizontal angular resolution between 0.017° and 0.023° was therefore chosen, equating to 3-90 

5 cm point spacing at 100 m range. The resulting mean point density ranges from 436 points m-² to 528 points m-². 

3 Methods 

3D changes to the rock glacier surface were calculated using the M3C2 algorithm over 376 days (herein referred to as one-

year) and 23 days (herein referred to as a three-week period), and expressed as the percentage contribution of the three-week 

period to the annual surface change rates. The results of the M3C2 algorithm were combined with distances between the 95 

centroids (ℝ3) of corresponding boulders within each point cloud, representing movement in the direction of rock glacier 

flow (Fig. 3b, 2). 
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Fig. 3. Explanation of different types of surface change that can be observed in a three-week period (a) and a one-year period (b). 

While the M3C2 distance refers to surface change in the normal direction (1), the measurements of surface displacement in flow 100 

direction reflect the creep-related movement of the rock glacier tongue (2). Additionally, single boulder movement was measured 

in a sample area of the rock glacier front (3). In the one-year period, manual interpretation of boulder movement is more difficult 

than in the three-week period. It is easier to distinguish single boulder movement from rock glacier creep in the three-week period, 

because creep-related surface movement is often below the level of detection (4). 

 105 

Each TLS point cloud was subsampled with a method that selects the point with the highest elevation value within a 3D 

spherical neighborhood of 0.05 m diameter. Using this subsampling method, no averaging was required and a consistent 

selection of 3D points within each sphere was performed. The uniform point distribution obtained aided the selection of a 

single set of parameters for the M3C2 algorithm, which was then used to quantify surface change for both periods. The 

method calculates signed distances between two point clouds along vectors orthogonal to the local surface, herein referred to 110 

as ‘surface change in the normal direction’ (Fig. 3b, 1) (Lague et al., 2013). This change corresponds to the 3D distance 

between the average positions of two point clouds, calculated in the direction of the normal vector. The projection radius for 

the M3C2 algorithm, representing the volume within which average positions are calculated, was set to 1 m. In order to 

respect the varying roughness values of the study area, a multi-scale normal vector estimation with a minimum normal scale 

of 8 m was used. This was large enough to ensure that the calculated distances would not be influenced by the local 115 

orientation of single boulders, instead aligning approximately perpendicular to the rock glacier surface. 
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Various sources of uncertainty can affect the accuracy of surface changes quantified using multitemporal lidar; ultimately 

determining the scale of movement that can be confidently detected (Hodge et al., 2010; Lague et al., 2013; Micheletti et al., 

2016). In addition to the systematic measurement errors related to the sensor and the alignment of two datasets, further 

uncertainty is introduced by varying point density and high roughness in morphologically complex, natural surfaces (Lague 120 

et al., 2013; Schürch et al., 2011; Soudarissanane et al, 2011). Therefore, the confidence in the true position of the surface, 

and hence the distance to itself in successive point clouds, are spatially variable. Although the point clouds were subsampled 

to a uniform 0.05 m distribution, this process does not eliminate variations in surface roughness across the cloud. To account 

for this, the M3C2 algorithm performs a confidence assessment by approximating the minimum detectable changes, referred 

to as the level of detection. This draws on (1) the fit of points within each neighborhood to a plane, with a higher standard 125 

deviation of distances resulting in less confidence in the surface’s average position within that neighborhood, and (2) the 

number of points within the neighborhood, with an increase in the number of points generally providing a more robust 

centroid position. The level of detection is calculated for each point individually across the point cloud (Lague et al., 2013). 

In order to obtain a uniform threshold value and to make level of detection values of both periods comparable, the 95 th 

percentile of the distribution of level of detection values was calculated for both dataset pairs used for the change analysis. 130 

For a pair of datasets, all quantified surface changes exceeding this level of detection threshold value were considered 

statistically significant. 

The ratio of the three-week change to the annual surface change was separated into mean positive and mean negative change. 

This provided an initial distinction between processes that raise or lower the surface and prevented mean values from 

clustering around zero where positive and negative changes were proximal. Visual inspection of the distribution of M3C2 135 

values (Fig. 4) enabled us to identify different active zones of the rock glacier based on the direction and magnitude of 

surface change. In these active zones, displacement of the rock glacier was estimated by measuring the movement of 48 

manually identified boulders in the direction of rock glacier flow (Fig. 3b, 2) in both observed periods. Although boulder 

movement at the rock glacier surface may be influenced by processes such as frost heave or thaw settlement, causing them to 

move perpendicular to the rock glacier surface, their motion is predominantly in the direction of rock glacier flow. 140 

4 Results 

The level of detection (p < 0.05) is 0.10 m in the three-week period and 0.11°m in the one-year period. The share of 

significant changes in the three-week period is 7.1 % as compared to 52.1 % in the one-year period. We interpret this as 

relating to the low magnitudes of surface change (Table 1) relative to the surface roughness. For both the three-week and 

annual periods, the majority of points exhibit positive surface changes in the normal direction (68.7 % and 61.7 %, 145 

respectively), indicative of mass accumulation and thickening. Interestingly, the contribution of the three-week period to the 

annual positive surface change in the normal direction amounts to 14.8 %, while this ratio is 21.4 % for negative surface 

change over the same point set. The higher proportion of negative change indicates that surface lowering is more active over 
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this period than surface raising. The rate of surface lowering is four times what would be expected if changes observed over 

the annual period were uniform through the year or, critically, averaged across the year (5.7 %). 150 

 

Fig. 4. Comparison of surface changes normal to local surface orientation in the lower tongue area of the Äußeres Hochebenkar 

rock glacier computed with the M3C2 algorithm for (a) the three-week period and (b) the one-year period. For a better visibility of 

the spatial change patterns, the scale of the color ramps is different for the two periods. Active zone 1 comprises the rock glacier 

front, while active zone 2 represents a ridge above the rock glacier front exhibiting negative surface change in both periods. Map 155 

Extent: Top left 652769 E, 5189346 N; bottom right 653051 E, 5188937 N (WGS 1984 UTM Zone 32N). Source of base map: 

Orthophoto Tyrol, Federal State Tyrol - data.tirol.gv.at. 

 

Table 1: Level of detection threshold values and percentage of M3C2 distance values exceeding these 

thresholds in the one-year period and in the three-week period 

 One-year Three-week 

Level of detection threshold value [m] 0.11 0.10 

Share of M3C2 distance values exceeding the level of 

detection threshold value [%] 

 

52.1 7.1 
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Surface changes over the course of a year include many small and discrete areas of positive and negative change on the 160 

orographic left side of the rock glacier front, between 2420 and 2460 m a.s.l. (Active Zone 1; Fig. 4b). In the three-week 

period, almost no similar boulder movement is visible in a mostly static rock glacier front (Fig. 4a). Although the change 

detection over three weeks shows only a few significant surface changes (> 0.10 m), some similarities of surface changes can 

be identified in both periods (Fig. 4). For example, both periods exhibit positive surface changes in active zone 1, caused by 

the advance of the rock glacier, and both periods exhibit negative surface change in a ridge above the rock glacier front 165 

(active zone 2). 

The ratio of distances travelled by individual boulders at the rock glacier front sheds light on how independently they move 

relative to creep of the rock glacier. In the three-week period, only few single boulder movements (eight were detected) 

exceed the level of detection, with the magnitudes of their movement differing considerably. The movement of boulders no. 

1 to 6 in the three-week period is < 1 m (Fig. 5a), which, combined with the direction of this movement, indicates that they 170 

move creep-induced, reflecting the advance of the wider rock glacier body. Conversely, movement of boulders no. 7 and 8 is 

> 5 m (Fig. 5b), indicating that these boulders have moved gravity-induced, i.e. independently from the underlying material. 

While their movement exceeded 5 m, manual tracking of these boulders was possible within the three-week period because 

relatively few other observable changes occurred. This discrepancy, which is only possible from the shorter three-week 

monitoring interval, is important for identifying boulders moving independently from rock glacier creep.  Given their 175 

independence from overall creep of the rock glacier, these eight boulders were removed from the calculation of boulder 

movement ratios between the three-week and one-year period.  

 

Fig. 5. Movement of single boulders in two different sub-areas of the rock glacier front during the three-week period (a) and the 

one-year period (b). Boulders are predominantly moving in the direction of rock glacier flow. The distances covered by the moving 180 
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boulders range from few cm to 6 m in the three-week period, enabling a clear distinction between creep-induced boulder 

movement (boulders 1 to 6) and gravity-induced boulder movement (boulders 7 and 8). In the one-year period, the magnitudes of 

the detected single boulder movement are more homogeneous than in the three-week period and remain well below 5 m, indicating 

that all of these movements are creep-induced. 

 185 

In contrast to the three-week period, the one-year period exhibits a high quantity of single boulder movements at the rock 

glacier front. As this makes their re-identification between successive point clouds difficult, it is only possible to find 

corresponding boulders at smaller distances, whose movement is likely to result from rock glacier advance. This is indicated 

by magnitudes of boulder movement that are more homogeneous than in the three-week period and that are well below 5 m 

(Fig. 5b). We cannot assume that no boulders in the one-year period are moving independently from the rock glacier 190 

advance, but such movements over larger distance (presumably > 5 m) could not be identified visually.  

In comparing different change directions, the M3C2 distances illustrate that in active zone 2 (Fig. 4), the three-week period 

contributes 0.10 m (20 %) to the annual surface change (-0.5 m) in the normal direction (Fig. 6). However, the measurements 

of boulder displacement indicate that the three-week period contributes 0.08 m (6 %) to the annual surface change of 1.4 m 

in flow direction in this active zone. Assuming a theoretical constant annual rate, the contribution of a three-week period is 195 

5.7 %. While the movement rate in the normal direction suggests an above-average contribution of the three-week period to 

the annual surface change, the movement rate from the boulder displacement measurements implies that quantified 

movement was in-line with the annual average during this three-week period. 
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Fig. 6. Percentage contribution of the three-week period to the annual surface change regarding positive change (a) and negative 200 

change (b). If changes observed over the annual period were uniform through the year or, critically, averaged across the year, the 

three-week period would contribute roughly 6 % to the annual change rates. Red areas are relatively active during the three-week 

period compared to the rest of the year, while blue areas are relatively stable during the three-week period. Active zone 1 

comprises the rock glacier front, while active zone 2 represents a ridge above the rock glacier front exhibiting negative surface 

change in both periods (d). Map Extent:  Top left 652769 E, 5189346 N; bottom right 653051 E, 5188937 N (WGS 1984 UTM Zone 205 

32N). Source of base map: Orthophoto Tyrol, Federal State Tyrol - data.tirol.gv.at. 

5 Discussion 

Level of detection and implications for monitoring 

Uncertainties in measuring the volume of discrete events, such as rockfalls, have been shown to accumulate with short 

interval monitoring (Williams et al., 2018). This occurs when single events that appear large in less frequent monitoring are 210 

in fact the sum of multiple small events, which coalesce over timescales equivalent to those of the short interval monitoring. 

The result is that more numerous small events are recorded with short interval monitoring, each with a higher volumetric 

uncertainty relative to its size. However, this differs from displacement monitoring, where the increased proximity of the 

surface between scans has the effect of lowering the uncertainty in change detection, as noted by Zahs et al. (2019). Our 
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uncertainty analysis corresponds with these findings. We note that the identification and tracking of corresponding boulders 215 

between surveys is improved as their distance between surveys (a function of monitoring interval) lowers. However, 

continuous surface change mechanisms can be better recognized over the one-year period, because the portion of significant 

M3C2 distance values for this change detection is much higher (52.1 %) than in the three-week period (7.1 %). 

Finding an appropriate temporal frequency of data capture has been identified as a key challenge to overcome the invisibility 

of surface change mechanisms caused by their mutual superimposition (Abellán et al., 2014). The fact that the rates of both 220 

lowering and raising of the rock glacier surface are considerably higher over three weeks as compared to the annual average 

shows that surface change and the drivers behind it vary seasonally. This seasonality makes it near-impossible to separate 

individual processes and their drivers from low-frequency monitoring. The capacity to resolve episodic processes, such as 

individual boulder movements, by monitoring at timescales of three weeks as compared to one year may therefore lead to the 

assumption that even higher monitoring frequency is desirable (e.g. daily or hourly). However, due to the small portion of 225 

significant surface changes, and the small quantity of individual boulder movement observable in a three-week period, the 

benefit of even more frequent monitoring may be limited for processes that are relatively slow-moving, such as rock glaciers. 

 

Implications for rock glacier understanding 

Studies of other alpine rock glaciers have shown that the surface velocity reacts to seasonal temperature changes (Kääb et al., 230 

2007; Ikeda et al., 2008; Delaloye et al., 2010). This response has been attributed to snow melt (Kääb et al., 2007) and to 

channeling of meltwater within the rock glacier, reducing the strength of frozen debris and promoting shearing along 

horizons (Ikeda et al., 2008; Kenner et al., 2017). Long-term measurements of cross-profiles on the Äußeres Hochebenkar 

rock glacier have shown that warm summers with high precipitation generally lead to an increase in surface velocity. At the 

lower end of the tongue, however, the same atmospheric conditions can lead to a decrease in surface velocity, indicating an 235 

ice loss due to high temperatures and a subsequent velocity decrease (Hartl et al., 2016). Our results demonstrate that the 

contribution of the three-week period to the annual negative surface change in the normal direction is higher than the 

contribution of the three-week period to the annual positive surface change in the normal direction. This rate (as a function 

of annual change) is four times the rate that would be derived from a theoretical uniform rate through the course of a year 

(based on annual monitoring). This indicates that the surface change and its underlying mechanisms, including shearing or 240 

plastic deformation, complemented by mechanisms involved in lowering of the surface, show seasonal variation. Given the 

prevalence of surface lowering that complements down-rock glacier movement during the three-week period, it is likely that 

this also indicates the occurrence of thaw settlement. The ability of our method to distinguish different seasonal surface 

change processes by considering both flow direction and normal direction shows that the approach of separating different 

directions of surface change has considerable potential for increasing rock glacier understanding. 245 

Rock glacier fronts are subject to material gain, caused by the advance of the rock glacier tongue (Micheletti et al., 2016). 

The presented surface change analysis illustrates that, in both time periods, the majority of M3C2 distances have a positive 

sign, indicating that the lower tongue area is affected by mass accumulation and thickening in both time periods. Multi-
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temporal Ground Penetrating Radar (GPR) measurements have shown that the central part of the rock glacier tongue has 

thinned since 2000 (Hartl et al., 2016a). At the existing cross-profiles, average surface velocities of 6.37 m a-1 at 250 

2570 m a.s.l. (roughly the upper end of our study area) have been measured since 1997, as compared to 1.98 m a-1 at the 

lower end of the tongue (Hartl et al., 2016b). Accounting for these differences in surface velocity as well as the mass 

accumulation shown by our results, implies that material is being shifted from the central to the lower tongue area. This 

supports the theory that the lower part of the tongue is separating from the rest of the rock glacier, as it moves into 

steepening terrain (~2580 m a.s.l.; Schneider & Schneider 2001). 255 

While previous works on the surface change of rock glaciers either measured the surface velocity by tracking objects 

(Nickus et al., 2015; Bodin et al., 2018) or calculated changes in the normal direction with the M3C2 algorithm (Zahs et al., 

2019), this study combines the M3C2 algorithm with manual measurements of boulder displacement in flow direction to 

separate the two directions of surface change. Seasonal variations in surface change of rock glaciers have been observed 

(Zahs et al., 2019), but little is known about seasonal changes in the directions of movement. At the Muragl rock glacier in 260 

Switzerland, measurements have shown that the surface velocity increases in autumn with a time lag of approximately three 

months after snow melt and gradually decreases again in winter (Kääb et al., 2007), meaning that in this rock glacier, surface 

displacement in flow direction is dominant in autumn. This notion of different directions of surface change dominating at 

different times of the year illustrates that, in order to obtain a comprehensive process understanding of rock glaciers, 

methods assessing change in multiple directions at each location of the rock glacier are required. 265 

6 Conclusion 

The aim of this study was to disaggregate different surface change mechanisms related to the deformation of the lower 

tongue area of an active rock glacier. Drawing on TLS monitoring at sub-monthly intervals, this was achieved by 

considering change as the ratio of movement during a three-week period compared to the annual deformation of a rock 

glacier. The analysis indicates that while the signal of continuous surface change is stronger relative to the level of detection 270 

in a one-year period, individual boulder movements can only be resolved in the investigated three-week period. Different 

directions of surface change are dominant at different times of the year, indicating a seasonality of certain surface change 

mechanisms and the drivers behind them. In a sample area of the rock glacier front, the contribution of the three-week period 

to the annual surface change in normal direction is 20 %, while the same period only contributes 6 % to the annual surface 

change in the direction of  rock glacier flow as indicated by boulder movements. These findings highlight that, in order to 275 

disaggregate different surface change mechanisms related to rock glacier deformation, increased temporal resolution (e.g. bi-

weekly to monthly) and multidirectional analyses are needed. 
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Data Availability Statement 

The data that support the findings of this study are available from the corresponding author upon reasonable request. They 

will be released openly following the review of this study. 280 

Multi-temporal terrestrial lidar datasets of the Äußeres Hochebenkar rock glacier have been openly published on PANGAEA 

(Pfeiffer et al., 2019). 

References 

Abellán, A., Oppikofer, T., Jaboyedoff, M., Rosser, N. J., Lim, M., and Lato, M. J.: Terrestrial laser scanning of rock slope 

instabilities. Earth Surf. Process. Landforms, 39(12), 80-97, https://doi.org/10.1002/esp.3493, 2014. 285 

Barsch, D.: Rockglaciers. Indicators for the present and former geoecology in high mountain environments. Springer-Verlag, 

Berlin, 1996. 

Bodin, X., Thibert, E., Sanchez, O., Rabatel, A., and Jaillet, S. Multi-annual kinematics of an active rock glacier quantified 

from very high-resolution DEMs: An application-case in the French Alps. Remote Sens., 10(4), 53-65, 

https://doi.org/10.3390/rs10040547, 2018. 290 

Bollmann, E., Klug, C., Sailer, R., and Stötter, J.: Quantifying rock glacier creep using airborne laser scanning: A case study 

from two rock glaciers in the Austrian Alps. Proc. ICOP10, 49-54, 2012. 

Bollmann, E., Girstmair, A., Mitterer, S., Krainer, K., Sailer, R., and Stötter, J.: A rock glacier activity index based on rock 

glacier thickness changes and displacement rates derived from airborne laser scanning. Permafrost Periglac., 14(4), 347-359, 

https://doi.org/10.1002/ppp.1852, 2015. 295 

Delaloye, R., Lambiel, C., and Gärtner-Roer, I.: Overview of rock glacier kinematics research in the Swiss Alps: seasonal 

rhythm, interannual variations and trends over several decades. Geogr Helv, 65(2), 135-145, doi:10.5167/uzh-38562, 2010. 

Hartl, L., Fischer, A., Klug, C., and Nicholson, L. Can a simple numerical model help to fine-tune the analysis of ground-

penetrating radar data? Hochebenkar rock glacier as a case study. Arct. Antarct. Alp. Res., 48(2), 377-393, 

https://doi.org/10.1657/AAAR0014-081, 2016. 300 

Hartl, L., Fischer, A., Stocker‐Waldhuber, M., and Abermann, J. Recent speed‐up of an alpine rock glacier: an updated 

chronology of the kinematics of Outer Hochebenkar rock glacier based on geodetic measurements. Geogr. Ann. A, 98(2), 

129-141, https://doi.org/10.1111/geoa.12127, 2016. 

Hodge, R., Brasington, J., and Richards, K.: Analysing laser‐scanned digital terrain models of gravel bed surfaces: linking 

morphology to sediment transport processes and hydraulics. Sedimentology, 56(7), 2024-2043, 305 

https://doi.org/10.1111/j.1365-3091.2009.01068.x, 2009. 

Hodge, R. A.: Using simulated terrestrial laser scanning to analyse errors in high-resolution scan data of irregular surfaces. 

ISPRS Journal of Photogrammetry and Remote Sensing, 65(2), 227-240, https://doi.org/10.1016/j.isprsjprs.2010.01.001, 

2010. 

https://doi.org/10.5194/esurf-2020-55
Preprint. Discussion started: 13 July 2020
c© Author(s) 2020. CC BY 4.0 License.



14 

 

Ikeda, A., Matsuoka, N., and Kääb, A. Fast deformation of perennially frozen debris in a warm rock glacier in the Swiss 310 

Alps: An effect of liquid water. J. Geophys. Res.-Earth, 113(F1), https://doi.org/10.1029/2007JF000859, 2008. 

Kääb, A., Haeberli, W., and Gudmundsson, G. H. Analysing the creep of mountain permafrost using high precision aerial 

photogrammetry: 25 years of monitoring Gruben rock glacier, Swiss Alps. Permafrost Periglac., 8(4), 409-414, 

https://doi.org/10.1002/(SICI)1099-1530(199710/12)8:4<409::AID-PPP267>3.0.CO;2-C, 1997. 

Kääb, A., Frauenfelder, R., and Roer, I. On the response of rockglacier creep to surface temperature increase. Global Planet. 315 

Change, 56(1-2), 172-187, https://doi.org/10.1016/j.gloplacha.2006.07.005, 2007. 

Kaufmann, V., and Ladstädter, R.: Monitoring of active rock glaciers by means of digital photogrammetry. International 

Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 34(3/B), 108-111, 2002. 

Kellerer-Pirklbauer, A., Delaloye, R., Lambiel, C., and Gärtner-Roer, I. Interannual variability of rock glacier flow velocities 

in the European Alps. Proc. EUCOP5, 396-397, 2018. 320 

Kenner, R., Phillips, M., Hauck, C., Hilbich, C., Mulsow, C., Bühler, Y., Stoffel, A., and Buchroithner, M.: New insights on 

permafrost genesis and conservation in talus slopes based on observations at Flüelapass, Eastern Switzerland. 

Geomorphology, 290, 101-113, https://doi.org/10.1016/j.geomorph.2017.04.011, 2017. 

Klug, C., Bollmann, E., Kääb, A., Krainer, K., Sailer, R., and Stötter, J. Monitoring of permafrost creep on two rock glaciers 

in the Austrian eastern Alps: combination of aerophotogrammetry and airborne laser scanning. Proc. ICOP10, 1, 215-220, 325 

https://doi.org/10.13140/RG.2.1.1807.7284, 2012. 

Klug, C., Rieg, L., Ott, P., Mössinger, M., Sailer, R., and Stötter, J.: A multi‐methodological approach to determine 

permafrost occurrence and ground surface subsidence in mountain terrain, Tyrol, Austria. Permafrost Periglac., 28(1), 249-

265, https://doi.org/10.1002/ppp.1896, 2017. 

Krainer, K., Bressan, D., Dietre, B., Hass, J.-N., Hajdas, I., Lang, K., Mair, V., Nickus, U., Reidl, D., Thies, H., and 330 

Tonidandel, D.: A 10,300-year-old permafrost core from the active rock glacier Lazaun, southern Ötztal Alps (South Tyrol, 

northern Italy). Quaternary Research, 83(2), 324-335, https://doi.org/10.1016/j.yqres.2014.12.005, 2015. 

Lague, D., Brodu, N., and Leroux, J. Accurate 3D comparison of complex topography with terrestrial laser scanner: 

Application to the Rangitikei canyon (NZ). ISPRS J Photogramm Remote Sens., 82(2), 10-14, 

doi:10.1016/j.isprsjprs.2013.04.009, 2013. 335 

Micheletti, N., Tonini, M., and Lane, S. N.: Geomorphological activity at a rock glacier front detected with a 3D density-

based clustering algorithm. Geomorphology, 278(2), 287-297, https://doi.org/10.1016/j.geomorph.2016.11.016, 2016. 

Nickus, U., Abermann, J., Fischer, A., Krainer, K., Schneider, H., Span, N., and Thies, H.: Rock glacier Äußeres 

Hochebenkar (Austria) – Recent results of a monitoring network. Zeitschrift für Gletscherkunde und Glazialgeologie, 47, 43-

62, 2015. 340 

Pfeiffer, J., Höfle, B., Hämmerle, M., Zahs, V., Rutzinger, M., Scaioni, M., Lindenbergh, R., Oude Elberink, S., Pirotti, F.,  

Bremer, M., Wujanz, D., and Zieher, T.: Terrestrial laser scanning data of the Äußeres Hochebenkar rock glacier close to 

https://doi.org/10.5194/esurf-2020-55
Preprint. Discussion started: 13 July 2020
c© Author(s) 2020. CC BY 4.0 License.



15 

 

Obergurgl, Austria acquired during the Innsbruck Summer School of Alpine Research. PANGAEA, 

doi:10.1594/PANGAEA.902042, 2019. 

Roer, I., Avian, M., Delaloye, R., Kaufmann, V., Delaloye, R., Lambiel, C., and Kääb, A.: Observations and considerations 345 

on collapsing active rockglaciers in the Alps. Proc. ICOP9, 2, 1505-1510, doi:10.5167/uzh-6082, 2008. 

Sailer, R., Rutzinger, M., Rieg, L., and Wichmann, V. Digital elevation models derived from airborne laser scanning point 

clouds: appropriate spatial resolutions for multi‐temporal characterization and quantification of geomorphological processes. 

Earth Surf Proc Land., 39(2), 272-284, https://doi.org/10.1002/esp.3490, 2014. 

Schneider, B.: Die Bewegungsmessungen am Blockgletscher im Äußeren Hochebenkar (Ötztaler Alpen, Tirol) seit 1938. 350 

[Diploma thesis]. Innsbruck University, Department of Geography, Austria, 1999. 

Schneider, B. and Schneider, H.: ABHANDLUNGEN-Zur 60-jährigen Messreihe der kurzfristigen 

Geschwindigkeitsschwankungen am Blockgletscher im Äußeren Hochebenkar, Otztaler Alpen, Tirol. Mit 11 Abbildungen 

und 8 Tabellen. Zeitschrift für Gletscherkunde und Glazialgeologie, 37(1), 1-34, 2001. 

Schürch, P., Densmore, A. L., Rosser, N. J., Lim, M., and McArdell, B. W.: Detection of surface change in complex 355 

topography using terrestrial laser scanning: application to the Illgraben debris‐flow channel. Earth Surface Processes and 

Landforms, 36(14), 1847-1859, https://doi.org/10.1002/esp.2206, 2011. 

Sorg, A., Kääb, A., Roesch, A., Bigler, C., and Stoffel, M. Contrasting responses of Central Asian rock glaciers to global 

warming. Sci. Rep., 5, https://doi.org/10.1038/srep08228, 2015. 

Soudarissanane, S., Lindenbergh, R., Menenti, M., and Teunissen, P.: Scanning geometry: Influencing factor on the quality 360 

of terrestrial laser scanning points. ISPRS journal of photogrammetry and remote sensing, 66(4), 389-399, 

https://doi.org/10.1016/j.isprsjprs.2011.01.005, 2011. 

Williams, J. G., Rosser, N. J., Hardy, R. J., Brain, M. J., and Afana, A. A.: Optimising 4-D surface change detection: an 

approach for capturing rockfall magnitude–frequency, Earth Surf. Dynam., 6, 101–119, https://doi.org/10.5194/esurf-6-101-

2018, 2018. 365 

Williams, J. G., Rosser, N. J., Hardy, R. J., and Brain, M. J. The importance of monitoring interval for rockfall magnitude‐

frequency estimation. J. Geophys. Res.-Earth., 124, 2841-2853, https://doi.org/10.1029/2019JF005225, 2019. 

Zahs, V., Hämmerle, M., Anders, K., Hecht, S., Sailer, R., Rutzinger, M., Williams, J. G., and Höfle, B.: Multi-temporal 3D 

point cloud-based geomorphological activity quantification and analysis at an Alpine rock glacier using airborne and 

terrestrial Lidar. Permafrost Periglac., 30, 222–238, https://doi.org/10.1002/ppp.2004, 2019. 370 

https://doi.org/10.5194/esurf-2020-55
Preprint. Discussion started: 13 July 2020
c© Author(s) 2020. CC BY 4.0 License.


